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Abstract

We investigate variants of the Kushner-Clark Random Direction Stochastic Approximation (RDSA)

algorithm for optimizing noisy loss functions in high-dimensional spaces. These variants employ dif-

ferent strategies for choosing random directions. The most popular approach is random selection from

a Bernoulli distribution, which for historical reasons goes also by the name Simultaneous Perturba-

tion Stochastic Approximation (SPSA). But viable alternatives include an axis-aligned distribution, a

normal distribution, and a uniform distribution on a spherical shell. Although there are special cases

where the Bernoulli distribution is optimal, there are other cases where it performs worse than other

alternatives. We find that for generic loss functions that are not aligned to the coordinate axes, the

average asymptotic performance is depends only on the radial fourth moment of the distribution of

directions, and is identical for Bernoulli, the axis-aligned, and the spherical shell distributions. Of these

variants, the spherical shell is optimal in the sense of minimum variance over random orientations of

the loss function with respect to the coordinate axes. We also show that for unaligned loss functions,

the performance of the Keifer-Wolfowitz-Blum Finite Difference Stochastic Approximation (FDSA) is

asymptotically equivalent to the RDSA algorithms, and we observe numerically that the pre-asymptotic

performance of FDSA is often superior. We also introduce a “quasirandom” selection process which

exhibits the same asymptotic performance, but empirically is observed to converge to the asymptote

more rapidly.

Index Terms

stochastic approximation, optimization, noisy loss function, random direction, finite difference,

simultaneous perturbation

I. INTRODUCTION

Stochastic approximation provides a simple and effective approach for finding roots and

minima of functions whose evaluations are contaminated with noise. Consider a smooth1 p-

dimensional loss function L : RRp → RR, with gradient g : RRp → RRp. Assume that L has a

unique2 local (and therefore global) minimum x∗ ∈ RRp. That is, L(x∗) ≤ L(x) for all x ∈ RRp,
and g(x) = 0 iff x = x∗.

If a direct (but possibly noisy) estimator ĝ(x) of the gradient function is available, then the

Robbins-Monro [1] algorithm (as extended by Blum [2] to multidimensional systetms) estimates
1To simplify exposition, we take L to be infinitely differentiable, but remark that many of the results only require that L be

s-times differentiable, where s depends on the particular result.
2Stochastic approximation algorithms can still be useful for loss functions with multiple local minima, but formal results are

more readily obtained if there is a single local minimum.
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a root of g(x) with the following recursion:

xk+1 = xk − akĝ(xk), (1)

where ak is a sequence of positive numbers that satisfy
∑∞
k=1 ak = ∞ and limk→∞ ak = 0. In

particular, ak = ao/kα with 0 < α ≤ 1 satisfies these conditions. If the estimator is unbiased,

that is E{ ĝ(x) } = g(x), then xk will converge to the root of g. In particular, it can be shown

that E{ (xk − x∗)2 } = O(k−α) for large k.

Kiefer and Wolfowitz [3] introduced an algorithm in which the gradient is estimated by finite

differences (Blum [2] also extended this result to multiple dimensions). This finite difference

stochastic approximation (FDSA) algorithm employs an estimator for the gradient whose ith

component is given by

ĝi(x) =
L̂(x + cei)− L̂(x− cei)

2c
, (2)

where ei is the unit vector along the ith axis, and L̂ is a noisy measurement of the loss function.

Since this is done for each component, it requires 2p measurements of the loss function for

each iteration. For c > 0, Eq. (2) is in general a biased estimator of the gradient. Convergenc

is achieved by providing a decreasing sequence ck with limn→∞ ck = 0 so that the bias is

eventually eliminated. However, the cost of using a smaller c is a larger variance, so the rate at

which ck → 0 must be carefully chosen.

In the FDSA algorithm, separate estimates are computed for each component of the gradient.

This means that a p-dimensional problem requires at least 2p evaluations of the loss function

per iteration. By contrast, the random direction stochastic approximation (RDSA) algorithms

estimate only one component of the gradient per iteration. Let ξ ∈ RRp be a direction vector.

In Kushner and Clark [4], ξ is treated as a unit vector with |ξ|2 = ∑

i ξ
2
i = 1 and since it is

a random direction, it satisfies E
{

ξξT
}

= I/p. Chin [5] prefers the convention that ξ have

radius3 √p so that |ξ|2 = ∑

i ξ
2
i = p and E

{

ξξT
}

= I . Regardless of convention for ξ, both

authors write the RDSA formula as

xn+1 = xk − ak
[

L̂(xk + ckξk)− L̂(xk − ckξk)
2ck

]

ξk, (3)

but it bears remarking that the formulas are not equivalent. Using the |ξ|2 = p convention,

the above formula corresponds directly to the Robbins-Monro formulation in Eq. (1). With the
3Chin [5] mistakenly says the radius is p.
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|ξ|2 = 1 convention, however, the above formula corresponds to xn+1 = xk − (1/p)akĝ(xk),
which by a simple rescaling of an is equivalent4 to Eq. (1). To facilitate comparisons with the

more recent work, we will take the convention that |ξ|2 = p.
Several choices are available for choosing the random distributions.

• The Axis distribution is the simplest: ξ = ±√pei with coordinate i chosen at random from

{1, . . . , p}.
• The Normal distribution distribution is obtained by taking each component ξi to be dis-

tributed asN(0, 1). The normal distribution is fully isotropic, but its radius is not fixed. The

average squared radius, however, is the same as for the other distributions: E{ |ξ|2 } = p.
• The Shell distribution, like the normal, is also fully isotropic, but its radius is fixed. In

practice, this is achieved by taking a vector from the normal distribution and then rescaling

it so that the radius is exactly
√
p.

• Finally, the Bernoulli distribution is obtained by taking each component ξi at random from

{−1, 1}.

Note that in the RDSA algorithm, the gradient is estimated in the direction ξ and the adjust-

ment to xk is in the same direction ξ. By contrast, the general form of the SPSA algorithm

introduced by Spall [6] employs two different directions, ξ and ζ, and the estimate is given by

ĝ(x) =

[

L̂(x + cξ)− L̂(x− cξ)
2c

]

ζ, (4)

where ξ is chosen from a distribution that has to satisfy some particular constraints, and the

components of ζ are given by

ζi = 1/ξi. (5)

Only in the special case of a Bernoulli distribution do we have the geometrically plausible ξ = ζ.

Sadegh and Spall [7] have shown that the Bernoulli distribution is always the best choice for

SPSA, and in fact the Bernoulli distribution is the only choice that has ever been advocated for

SPSA. Thus, SPSA is really just a special case of RDSA, though it does bear remarking – to
4In a footnote, Chin [5, p.245] claims that it is “incorrect” to use a radius of 1, and says that Kushner and Clark [4, p.60]

are mistaken in their proof of convergence. Our reading of Kushner and Clark (see especially the remark on p.59: “except that

(2.3.18) replaces (2.3.11)”) suggests that they have correctly accounted for this extra factor of p.
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the credit of SPSA’s inventor – that the use of a Bernoulli distribution with RDSA had not been

suggested until after SPSA had been introduced.

Because the optimal direction choice for SPSA is the Bernoulli distribution, there is some

sense that the Bernoulli distribution might be optimal for RDSA as well. Chin [5] provides both

analytic arguments and results of a numerical experiment to show that SPSA (that is, RDSA with

Bernoulli directions) outperforms RDSA (with a normal distribution). Some of Chin’s findings

have been repeated elsewhere in the literature. For instance, Wang and Chong [8] note that

Bernoulli is optimal for SPSA, and go on to suggest that by following the approach of Sadegh

and Spall [7], they “can show that the Bernoulli distribution is also optimal” for the RDSA

algorithm, “based on the asymptotic distribution established by Chin” in Ref. [5].

Chin [5] also includes a comparison with FDSA and finds that the FDSA algorithm requires

p times as much computation to achieve the same result. This is another result that has been

widely reported, and in fact Spall [9], [10], [11], [12] claims that:

Under reasonably general conditions, SPSA and Kiefer-Wolfowitz finite-difference-

based SA (FDSA) achieve the same level of statistical accuracy for a given number of

iterations even though SPSA uses p times fewer evaluations than FDSA (since each

gradient approximation uses only 1/p the number of function evaluations).5

However, we will argue that the “reasonably general” conditions for achieving this full factor of

p are in fact rather special, and we question whether one should reasonably expect to encounter

these conditions in practice.

II. CONVERGENCE RATES FOR STOCHASTIC APPROXIMATION ALGORITHMS

To achieve an optimal convergence rate, there is a trade-off between variance and bias. We

can write the gradient estimator as a sum of three terms: the true gradient g, the noise η, and the

bias b:

ĝ(x) = g(x) + η(x) + b(x), (6)

where

η(x) = ĝ(x)− E{ ĝ(x) } , (7)

b(x) = E{ ĝ(x) } − g(x). (8)
5Although Spall makes this statement (verbatim) in the three references and on his website, the source that is cited (his own

1992 paper [6]) does not make such a sweeping statement.

June 27, 2003 DRAFT



6

In general, the more accurately the gradient g(x) is estimated, the more rapidly the iteration

in Eq. (1) will converge to the solution. In the following two subsections, we will derive first

the variance and then the bias for different estimators of the gradient, and in the subsection after

that, we will show how these relate to the convergence of Eq. (1).

A. Variance

From the definition of noise in Eq. (7), we can write for the FDSA case

ηi =
ε+ − ε−
2c

, (9)

where ε± = L̂(x± cei)−L(x± cei) is the noise in the measurement of the loss function; it has

mean zero and variance σ2. The covariance of the noise is given by

E
{

ηηT
}

=
σ2

2c2
I, (10)

and the total variance in the noise is the trace of the covariance matrix:

E
{

ηTη
}

= tr
(

E
{

ηηT
})

=
pσ2

2c2
. (11)

For RDSA, we do not compute each component separately, so the total noise is given by

η =
ε+ − ε−
2c

ξ, (12)

and the covariance and variance are given by

E
{

ηηT
}

=
σ2

2c2
E
{

ξξT
}

=
σ2

2c2
I, (13)

E
{

ηTη
}

= tr
(

E
{

ηηT
})

=
pσ2

2c2
, (14)

which is the same as the FDSA case, and is the same regardless of which RDSA distribution is

used.

B. Bias

Although we saw that the variance in the estimator of the gradient did not depend on choice

of RDSA distribution, it will turn out that the bias in the estimator can depend on this choice.
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The bias is defined in Eq. (8), and for RDSA, we can write this

b(x) = E

{

L(x + cξ)− L(x− cξ)
2c

ξ

}

− g(x)

= E
{

L
(1)
ξ (x) ξ

}

+
1

6
c2E

{

L
(3)
ξ (x) ξ

}

+O(c4)− g(x), (15)

where the scalar L(n)ξ (x) is the nth derivative of L in the direction ξ; it is defined by

L
(n)
ξ (x) =

∂n

∂tn
L(x+ ξt). (16)

In particular, L(1)ξ (x) =
∑

i gi(x)ξi, and

L
(3)
ξ (x) =

∑

ijk

Lijk(x)ξiξjξk, (17)

where Lijk is third derivative along the axes ei, ej and ek.

We will assume that we are in the asymptotic regime, where x → x∗, and c is small, so we

can neglect the O(c4) terms. Then, the `th component of the bias b is given by

b` = E

{

(
∑

i

giξi) ξ`

}

− g` +
1

6
c2
∑

ijk

LijkE{ ξiξjξkξ` }

=
∑

i

giE{ ξiξ` } − g` +
1

6
c2
∑

ijk

LijkE{ ξiξjξkξ` } . (18)

For nearly all random direction schemes that might be considered, and certainly for the schemes

considered in this paper, the only nonzero values for E{ ξiξ` } and E{ ξiξjξkξ` } are those that

involve even moments. We have

b` = g`(E
{

ξ2`
}

− 1) + 1
6
c2



L```E
{

ξ4`
}

+ 3
p
∑

i=1,i6=`

Lii`E
{

ξ2` ξ
2
i

}



 , (19)

where the factor of three comes from the equality of Lii` = Li`i = L`ii for smooth functions.

Furthermore, E{ ξ2` } = 1 (since E{∑i ξ2i } = p), so the first order gradient term vanishes. We

will define

τ ≡ E
{

ξ4`
}

, (20)

ν ≡ E
{

ξ2` ξ
2
i

}

, (21)

so then the bias can be expressed as

b` =
1

6
c2



τL``` + 3ν
p
∑

i=1,i6=`

Lii`



 . (22)
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τ = E{ ξ4` } ν = E{ ξ2` ξ2m } pτ + p(p− 1)ν [τ − 3ν]2

Distribution

Bernoulli 1 1 p2 4

Axis p 0 p2 p2

Normal 3 1 p(p+ 2) 0

Shell 3p/(p+ 2) p/(p+ 2) p2 0

TABLE I

FOUR RANDOM DIRECTION DISTRIBUTIONS AND STATISTICS THAT CHARACTERIZE THE BIAS IN THEIR ESTIMATES OF

GRADIENT.

Note that Eq. (2.4) in Chin [5] gives the incorrect form b` = 1
6
c2τ

[

L``` + 3
∑p
i=1,i6=` Lii`

]

. As it

turns out, Chin’s formula is correct for the Bernoulli distribution, for in that case τ = ν. Chin’s

formula is also correct if all the cross-derivatives (Lijk except when i = j = k) happen to be

zero, but in that degenerate case a much simpler expression would be used. To compare differ-

ent random direction distributions on general loss functions, the correct expression in Eq. (22)

should be employed.

Table I shows the values for τ and ν for different random direction distributions. The com-

putation is straightforward for Bernoulli, Axis, and Normal; for Shell, the derivation is given in

the Appendix I.

For the FDSA algorithm, the bias is given by

b` =
1

6
c2L```. (23)

For the same value of c, this is generally much smaller than the RDSA bias, but the price paid is

p times as many evaluations of the loss function. If the cross-derivatives are zero, however, then

the more expensive FDSA estimator has the same bias as the RDSA-Bernoulli estimator.

C. Convergence of stochastic approximation

Having derived the variance and bias for various estimators ĝ(x) of the gradient, we will now

show how these are related to the convergence xk → x∗. We invoke a theorem of Fabian [13],

June 27, 2003 DRAFT



9

regarding recursions of the form

uk+1 = (I − k−αΓk)uk + k−(α+β)/2Φkvk + k−α−β/2tk, (24)

where Γk → Γ and Φk → Φ are p × p matrices, vk is a noise vector for which E{vk } = 0
and E

{

vkv
T
k

}

→ Σ where Σ is a p × p covariance matrix, and tk → t is a p-dimensional

vector. Such recurrences converge to zero at a rate uk ∼ k−β/2 and in particular, converge

asymptotically to a scaled gaussian with a specific mean µ and covarianceV:

lim
k→∞
kβ/2uk = N (µ,V). (25)

We refer the reader to Ref. [13] for more precise details about the conditions of convergence

and for the specific expressions for mean and covariance.

Note that we can write the true gradient g(x) in terms of the Hessian H(x), where Hij =

∂2L/∂xi∂xj :

g(x) = H(x′) (x− x∗) (26)

for a point x′ that is somewhere on the segment between x and x∗. Thus, we can rewrite the

Robbins-Monro recursion in Eq. (1) as

xk+1 − x∗ = [I − akH(x′k)] (xk − x∗)− akb(xk)− akη(xk). (27)

We take ak = aok−α and make the associations

uk = xk − x∗, (28)

Γk = aoH(x
′
k), (29)

Φk = I, (30)

vk = −aok(−α+β)/2η(xk), (31)

tk = −aokβ/2b(xk). (32)

The boundedness of the sequences vk and tk provide conditions on β in terms of α and γ. In

particular, E
{

vkv
T
k

}

→ Σ implies that a2ok
−α+βηηT → Σ. From Eq. (13) and the schedule

ck = cok
−γ we have

a2oσ
2

2c2o
k−α+β+2γ → Σ, (33)
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which imposes the condition−α + β + 2γ ≤ 0 or

β ≤ α− 2γ. (34)

We have found that the bias depends on the details of the gradient estimator, but the general

form is

b(x) = b̃(x)c2s = b̃(x)c2so k
−2sγ , (35)

where b̃(x) depends both on the details of the loss function and the variant of RDSA or FDSA

that is used, but does not depend on c and therefore has a well-defined limit b̃ = limk→∞ b̃(xk).

Also, s = 1 for the usual two-point estimators of gradient, but can be larger than one for the

higher-order estimators described in Appendix II. The condition tk → t leads to

−aoc2so b̃(xk)kβ/2−2sγ → t, (36)

which implies β/2− 2sγ ≤ 0 or

β ≤ 4sγ. (37)

Combining Eqs. (25,34,37), we have the convergence given by E{ |xk − x∗|2 } = O(k−β)
where β ≤ min(α − 2γ, 4sγ). The optimal convergence maximizes β, and this occurs when

α = 1 and γ = 1/(4s+ 2), leading to β = 2s/(2s+ 1). In particular, for the usual s = 1 case,

we have γ = 1/6 and β = 2/3.

With only slight loss of generality (and a huge savings in the amount of tedious bookkeeping

we have to keep track of), we will assume that the data have been scaled so that the Hessian

is a multiple of the identity matrix. In fact, we will take H(x∗) = 2I , which is equivalent to

assuming that the loss function is of the form L(x) = |x− x∗|2 + higher order terms.

For the case of optimal α, β, and γ, and with the simplified Hessian, Fabian’s result in

Ref. [13] leads to a simplified expression

lim
k→∞
E
{

kβ|xk − x∗|2
}

=
a2oc

−2
o pσ

2

2ao − β/2
+
a2oc

4s
o |b̃|2

(2ao − β/2)2
. (38)

We remark that the first term involves the noise in the estimator of the loss function, and that

is essentially the same for FDSA and the different RDSA variants. However, the second term,

which is proportional to the bias in the estimator of the gradient, does depend on those differ-

ences, and that is the focus of our comparisons.
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This expression allows us to optimize the parameters ao and co. By taking the derivative with

resepect to co and setting to zero, we can get a general sense of scaling for the optimal co:

co ∼
(

pσ2

|b̃|2

)1/(4s+2)

. (39)

And specifically for the standard case s = 1, we have ao = 1/2, and

co =

(

2pσ2

3|b̃|2

)1/6

, (40)

and putting this back into Eq. (38) leads to

E
{

|xk − x∗|2
}

∼ k−2/3|b̃|2/3p2/3σ4/3. (41)

For RDSA, there are N = 2k function evaluations in k iterations, so the mean squared error

scales as

MSERDSA ∼ N−2/3|b̃|2/3p2/3σ4/3, (42)

while for FDSA, there are N = 2pk evaluations by the kth iteration,so

MSEFDSA ∼ N−2/3|b̃|2/3p4/3σ4/3. (43)

A natural measure of the relative “cost” of the different algorithms is the number N of loss

function evaluations required to achieve a given level of accuracy. If we let ε be the desired

accuracy, then then we can rewrite the previous two equations as

NRDSA ∼ |b̃|pσ2ε−3 (44)

and

NFDSA ∼ |b̃|p2σ2ε−3. (45)

D. Expected bias for generically rotated loss functions

The bias in an estimator of gradient for a given loss function depends on the relative orienta-

tion of the loss function with respect to the coordinate axes. Fig. 3 provides a clear visualiza-

tion of this concept; here, a forty-five degree rotation would swap the Axis directions with the

Bernoulli directions.
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To better understand this effect, we consider loss functions with “generic” orientations with

respect to the coordinate axes. Conceptually, we do this by randomly rotating the loss function.

But a direct average of the bias over random rotations of the loss function would produce a zero.

So instead, we randomly rotate the coordinate axes with respect to which the random directions

are chosen. Suppose ξ is chosen from some distribution P (ξ). Then we will consider a new

distribution PU(ξ) = P (Uξ) which is the distribution P (ξ) rotated according to the orthogonal

matrix U .

We will compute τU , the fourth moment of ξ ′` where ξ′ is taken from the distribution PU .

τU = E
{

(ξ′`)
4
}

= E
{

(Uξ)4`
}

= E







∑

ijkm

ui`uj`uk`um`ξiξjξkξm







=
∑

ijkm

ui`uj`uk`um`E{ ξiξjξkξm } . (46)

The average over all random directions of E{ ξiξjξkξm } is given by

E{ ξiξjξkξm } = τδ(i = j = k = m)

+ νδ((i = j) 6= (k = m))

+ νδ((i = k) 6= (m = j))

+ νδ((i = m) 6= (j = k)), (47)

and therefore

τU = τ
∑

i

u4i` + 3ν
∑

i6=j

u2i`u
2
j`. (48)

For a rotated loss function, the bias would be proportional to τU instead of the τ that is appro-

priate for the unrotated loss function. If we consider an ensemble of rotated loss functions, the

average τU would be given by6

〈τU〉 = τ

〈

∑

i

u4i`

〉

+ 3ν

〈

∑

i6=j

u2i`u
2
j`

〉

= τp
〈

u4i`
〉

+ 3νp(p− 1)
〈

u2i`u
2
j`

〉

. (49)

6So far, we have done two kinds of averaging, and now this is a third. We use E{ • } to indicate expectation over loss function

evaluation, and to indicate averages over random directions. Now, we are using 〈•〉 to represent an average over random rotation

matrices U .
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Since the matrix elements u•` form orthogonal vectors of unit length, we can treat them as axes

of a p-dimensional sphere, and compute moments as described in Appendix I by Eqs. (88-93).

In particular, we have

〈τU〉 = τp
3

p(p+ 2)
+ 3νp(p− 1) 1

p(p+ 2)

=
3

p(p+ 2)
[pτ + p(p− 1)ν] . (50)

A similar argument shows

〈νU〉 =
1

p(p+ 2)
[pτ + p(p− 1)ν] . (51)

But it is important to note that

pτ + p(p− 1)ν = pE
{

ξ4i
}

+ p(p− 1)E
{

ξ2i ξ
2
j

}

(52)

= E

{

(
∑

i

ξ2i )
2

}

= E
{

r4
}

, (53)

where E{ r4 } is the radial fourth moment of the direction ξ. Since the radius is normalized

so that r =
√
p, we have E{ r4 } = p2 for the Bernoulli, Axis, and Shell distributions; for the

Normal distribution, the radius is only normalized on average, and we have E{ r4 } = p(p+ 2).
Since the averages of τU and νU depend only on the radial fourth moment, they are the same

for Axis, Bernoulli, and Shell. So for generic orientations of the loss functions with respect to

the coordinate axes, all three random direction distributions will on average give the same result.

In particular, we have that the rotation-averaged bias is given by

〈b`〉 =
1

6
c2
[

pτ + p(p− 1)ν
p(p+ 2)

]



3L``` + 3
p
∑

i=1,i6=`

Lii`





=
1

2
c2
[

E{ r4 }
p(p+ 2)

] p
∑

i=1

Lii`. (54)

Note that for the FDSA algorithm, the rotation-averaged bias can be shown to be

〈b`〉 =
1

2
c2
[

1

p+ 2

] p
∑

i=1

Lii`, (55)

which is a factor of p smaller than the RDSA bias in Eq. (54) for the Bernoulli, Axis, and

Shell distributions. Thus, based on Eq. (44) and Eq. (45), we see that the asymptotic efficiency

of FDSA and RDSA (except for the Normal random direction distribution) are on average the

same for loss functions which do not exhibit any special alignment to their coordinate axes.
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E. Squared bias

We have seen that the mean (averaged over all orientations) bias is identical for Axis, Bernoulli,

and Shell. But for any given orientation, one may well be better than another, as we have seen. A

question that then arises regarding the reliability of different methods, and one way to measure

this is by averaging the squared bias over all orientations. If two methods have the same mean

bias, but one method has a bias that varies from small to large as the orientation changes while

the other has a more consistent bias, then the first method with have a larger squared bias. For a

loss function that is completly symmetric under rotation, the magnitude of bias will be the same

for all rotations, regardless of the method used for choosing random directions. So the squared

bias also depends on the anisotropy of the loss function.

We compute the rotation-averaged squared bias:

〈

bTb
〉

=
p
∑

`=1

〈

b2`
〉

=
1

36
c4

p
∑

`=1

〈



τL``` + 3ν
∑

m6=`

L`mm





2〉

(56)

=
1

36
c4
[

τ 2p
〈

L2```
〉

+ 6τνp(p− 1) 〈L```L`mm〉

+9ν2p(p− 1)
〈

L2`mm
〉

+ 9ν2p(p− 1)(p− 2) 〈L`mmL`nn〉
]

. (57)

Although the average value of L`mn – averaged over rotations specified by random orthogonal

matrices U – is zero for any choice of `mn, the averages of products of these third derivatives

will generally be nonzero. In general, we can use

L`mn =
∑

ijk

ui`ujmuknL
′
ijk (58)

to describe the rotated third derivative L`mn in terms of the original third derivatives L′ijk.

Forgoing full generality, we will consider loss functions whose anisotropy is characterized,

like that of the Chin function (described in the next section), by the existence of a coordinate

system in which the loss is a sum of separate but identical losses on each of the coordinates.

That is:

L(z) =
∑

i

L(
∑

j

uijzj), (59)
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where uij are the matrix elements of the rotation matrix U . And the third derivative looks like

L`mn = L′′′
∑

i

ui`uimuin. (60)

To compute the expectation value for the various products that appear in Eq. (57), we substi-

tute from Eq. (60):

〈

L2```
〉

/(L′′′)2 =
∑

jk

〈

u3j`u
3
k`

〉

=
∑

j

〈

u6j`
〉

= p
〈

u6j`
〉

, (61)

and similarly,

〈

L2`mm
〉

/(L′′′)2 = p
〈

u2j`u
4
jm

〉

, (62)

〈L```L`mm〉 /(L′′′)2 = p
〈

u4j`u
2
jm

〉

, (63)

〈L`mmL`nn〉 /(L′′′)2 = p
〈

u2j`u
2
jmu

2
jn

〉

. (64)

The matrix elements form orthogonal vectors of unit length, so the results of Appendix I can be

used to obtain:

〈

L2```
〉

/(L′′′)2 = 15

(p+ 2)(p+ 4)
, (65)

〈

L2`mm
〉

/(L′′′)2 = 3

(p+ 2)(p+ 4)
, (66)

〈L```L`mm〉 /(L′′′)2 =
3

(p+ 2)(p+ 4)
, (67)

〈L`mmL`nn〉 /(L′′′)2 =
1

(p+ 2)(p+ 4)
. (68)

Substituting into Eq. (57),

〈

bTb
〉

=
p(L′′′)2c4

36(p+ 2)(p+ 4)

[

15τ 2 + 18τν(p− 1)

+ 27ν2(p− 1) + 9ν2(p− 1)(p− 2)
]

, (69)

and with a little algebraic manipulation, we can obtain

〈

bTb
〉

= p

(

L′′′c2
2p(p+ 2)

[pτ + p(p− 1)ν]
)2

+
p(p− 1)(L′′′)2c4
6(p+ 2)2(p+ 4)

[τ − 3ν]2. (70)
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Here, the first term is the square of the average bias, and the second term is “variance of the

bias” – note that the second term is proportional to an anisotropy factor [τ−3ν]2 which vanishes

for spherically symmetric distance distributions such as Shell and Normal.

The anisotropy factor is nonzero for the the Axis and Bernoulli distributions. The Axis disti-

bution (with only 2p directions in p dimensions) has the highest variance-of-bias and is arguably

the least reliable. The Bernoulli distribution (with 2p directions in p dimensions) has a positive

variance-of-bias, but for large p the contribution of that variance to the total squared bias scales

only as O(1/p2) and the effect is about a percent when p = 15.

It is worth noting that for Bernoulli (and Shell), the dominant contribution to the bias scales

not with τ , but with ν. In other words, neglecting the effect of cross-derivative terms will lead

to completely unreliable conclusions about the behavior of stochastic approximation algorithms

on generically oriented loss functions.

III. NUMERICAL STUDIES

A. Comparison for Chin’s loss function

In Chin [5], various finite difference stochastic algorithms are compared using a loss function7

L(x) = |x|2 +
p
∑

i=1

exi/p, (71)

which can also be written

L(x) =
p
∑

i=1

L(xi), (72)

with L(x) = x2 + ex/p. This is something of a degenerate example; although it is nominally

a p-dimensional problem, it is really the same one-dimensional problem, duplicated p times. If

such a loss function encountered in practice were known to have this structure, then one could

adapt the algorithm to exploit this symmetry. But it is reasonable to imagine that the practitioner

is unaware of this structure, and wants to apply a general-purpose optimization algorithm to

it. One particular aspect of the symmetry in Eq. (72) is that the cross-derivatives are zero, and

so Eq. (22) simplifes in this case to b` = (1/6)c2τL``` and the bias is simply proportional to

the fourth moment τ defined in Eq. (20). As Table I shows, the Bernoulli distribution has the

smallest τ . (Chin [5] says that uniform distribution on a spherical shell is less accurate than the
7This is Eq. (4.1) from Chin [5], apart from a minor typo in the original.
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Fig. 1. Mean squared error for different choices of random direction distribution using the Chin loss function in Eq. (71),

plotted as a function of the parameter c. Here, plus (+) denotes the axis distribution, cross (×) denotes the Bernoulli distribution,

circle (◦) denotes the uniform shell distribution, and diamond (3) is the normal distribution. We use squares (2) to indicate the

performance of the FDSA algorithm. Results are based on 100 trials. Shown are (a) the pre-asymptotic behavior withN = 1000

measurements; (b) the asymptotic behavior with N = 105 measurements.

normal distribution, but as Table I shows, the uniform distribution has a slightly smaller τ and

will be more accurate.)

Figs. 1 and 2 show the results of our own numerical experiments with the Chin loss function.

For these experiments, we used parameters based on the experiment reported in Chin [5]: p =

15, α = 1, ao = 0.5, and γ = 1/6. (Chin [5] reported using β = 1/6, but we presume that this is

a typo, since that would lead to the nonoptimal γ = 5/12.) Our choices for co generally agreed

with the values used by Chin [5]; we estimated the optimal co numerically for each distribution,

and ran each at its optimum. Each evaluation of the loss function included a gaussian noise level

of σ = 1.9365; this corresponds to a variance in the difference of two loss function estimates of

2σ2 = 7.5. We used xo = [−0.01, . . . ,−0.01] for initial conditions, and express squared error

relative to this initial condition:

Err2 =
|x− x∗|2
|xo − x∗|2

, (73)

where x∗ = [−0.0332595052015928, . . .] is the minimum of the loss function.

Fig. 1 shows that at the Bernoulli-optimal value of co = 22.5, the Bernoulli distribution

performed dramatically better than the other distributions. But if each distribution is allowed to

use its own optimum, the difference is not as dramatic, though still is significant. It is true that
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Fig. 2. Mean squared error, based on 10 trials, for different choices of random direction with the Chin loss function in Eq. (71),

plotted as a function of the number of measurements, N . A separate optimal value of co was chosen for each distribution:

co = 9 for the axis (+) distribution; co = 15 for the shell (o) and normal (3) distributions; and co = 22.5 for the Bernoulli (×)

distribution; we also used co = 22.5 for the FDSA (2) algorithm.

one does not generally have access to the optimal co in real problems; still, a fair comparison

requires that the performance of each method be determined from the co that is optimal for that

method. Using Eq. (40) as a guide, we expect co ∼ |b̃|−1/3.
Since the cross-derivatives vanish for this loss function, we see from Eq. (22) and Eq. (23)

that FDSA and Bernoulli have the same bias, and we observe the same optimal co for those two

algorithms. The scaled bias term b̃ is p times larger for Axis than Bernoulli, which suggests

that the optimal co for Axis will be p−1/3 times co for Bernoulli (that is: about 40% as large for

p = 15), which is consistent with Fig. 1. The scaled bias term is only about three times larger

for Shell and Normal than it is for Bernoulli, which suggests that the optimal co for those two

algorithms will be about 3−1/3 ≈ 0.7 the size of the optimal co for Bernoulli.

Fig. 2 shows that the scaling of squared error as O(N−2/3) is observed for all the schemes,

but coefficient of that scaling is best for Bernoulli, not as good for Shell and Normal, and worst

for the Axis distribution and for FDSA. This confirms the theoretical predictions in Chin [5],

and agrees with the scaling in Eq. (42) and Eq. (43). We also note that in the asymptotic
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Fig. 3. (a) Contour plot of the loss function in Eq. (71) for p = 2 dimensions. Contours are shown for every ∆L = 25

up to L = 500. The horizontal and vertical dashed lines correspond to the axis-oriented directions; the diagonal dotted and

dash-dotted lines correspond to the two Bernoulli directions. (b) Loss function is plotted as a function of the position along the

slices for the three slices in panel (a). The dash-dotted line is a perfect parabola (third derivative is zero), and departures from

this are greatest in the directions parallel to the axes.

regime, Bernoulli achieves the same accuracy as FDSA with p = 15 times fewer measurements.

Nonetheless, it is interesting to see that for N � 1000 measurements, the FDSA algorithm is

substantially more accurate.

Fig. 3 provides a visualization of these results for the p = 2 case. Along the axis directions,

much steeper deviations from the limiting quadratic are seen, while the slopes are more benign

in the diagonal Bernoulli directions.

B. Another contrived loss function

We investigated a loss function given by

L(x) = |x|2 +K
[

∑

i

xi
∑

i

x2i −
∑

i

x3i

]

/p2. (74)

This is a loss function for which the direct third derivativesL``` are zero, but the cross-derivatives

are nonzero. Where Chin’s function depends on τ only, this function depends on ν only. We

would therefore expect to achieve the least bias for the Axis distribution; in fact, since ν = 0 for

this case, we expect zero bias for this distribution. This is confirmed in Fig. 4(a) which shows
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Fig. 4. Mean squared error for different choices of random direction distribution applied to the contrived loss function in

Eq. (74) with K = 0.01 and p = 15. See caption to Fig. 1 for explanation of symbols. (a) Plotted against the parameter c, an

optimum of c = 9 is observed for Bernoulli, Shell, and Normal. For Axis and FDSA, the bias is zero for arbitrarily large c, so

the larger c the better. We used c = 30 as the “optimum.” (b) Plotted against the number of measurements N , we see that Axis

and FDSA have the best asymptotic performance, while Bernoulli, Normal, and Shell, are worse.

that the performance continues to improve monotonically as co is increased for Axis. Since

ν = 1 for the Bernoulli and Normal distributions, we expect essentially the same performance

for these two. We have ν = p/(p + 2) for Shell, which suggests slightly better performance

(compared to Bernoulli and Normal), though for large p, the difference is small.

Note that the empirical comparison of Axis with the FDSA algorithm in Fig. 4 is artificial,

since we arbitrarily chose to use the same value of co for both methods. The value we chose is

not optimal for either method since the performance improves monotonically with increasing co

for both methods. The superior small-N performance of FDSA is again evident.

C. Rotated Chin function

To investigate the performance of these different random direction schemes on a more generic

loss function, we altered Chin’s function so that it would not be so neatly aligned with the axes.

We chose a random8 rotation matrix U and defined

L̃(x) = L(Ux) = |Ux|2 +
∑

i

e(Ux)i/p, (75)

8We made a matrix with random entries, applied a QR decomposition, and used the orthogonal Q matrix.
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Fig. 5. Mean squared error as a function of the parameter c, using the randomly rotated Chin loss function, defined in Eq. (76),

for different choices of random direction distribution. Symbols are defined in the caption to Fig. 1. Shown are (a) the pre-

asymptotic behavior with N = 1000 measurements; (b) the asymptotic behavior with N = 105 measurements.

or

L̃(x) =
p
∑

i=1



x2i + exp





∑

j

Uijxj/p







 , (76)

which uses |x|2 = |Ux|2 since U is orthogonal.

For this loss function, we did the same experiment as for the unrotated Chin loss function, and

this time (as shown in Figs. 5 and 6), we found that the asymptotic performance for each of the

different random direction distributions was virtually the same. The performance of FDSA was

also comparable to the RDSA algorithms, and in the pre-asymptotic regime, FDSA was better.

This is in contrast to the oft-made claim that RDSA algorithms are p times more efficient than

FDSA “under reasonably general conditions.” Note that the optimal co for FDSA is substantially

larger (by a factor of p1/3 ≈ 2.5 for p = 15) than the optimal co for the various RDSA algorithms.

This follows from the scaling of co ∼ |b̃|−1/3 in Eq. (40) and the fact that in the generically

rotated case, the FDSA bias is p times smaller than the RDSA bias (compare Eq. (55) and

Eq. (54)).

IV. NON-INDEPENDENT CHOICE OF DIRECTION

In the comparisons so far, we have assumed that random directions were chosen to be in-

dependent and identically distributed (IID) according to the distribution of choice. Taking an
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Fig. 6. Mean squared error for the rotated Chin loss function, defined in Eq. (76), plotted against the numberN of measurements

of the loss function. Symbols are defined in the caption to Fig. 1.

analogy with the use of quasirandom numbers for Monte Carlo integration, we also performed

some experiments in which we considered random directions that were not strictly IID. In par-

ticular, in our p = 15 dimensional space, we took random directions that were constrained to be

perpendicular to the P previous random directions where 0 < P < p.

Interestingly, we found that the asymptotic performance was hardly affected. But Fig. 7 shows

that in the pre-asymptotic regime, this “quasirandom” choice of direction seems to provide a very

noticeable improvement.

V. CONCLUSIONS

The performance of different variants of the RDSA algorithm is driven by the accuracy with

which they estimate the gradient of the loss function. In Eq. (22), that bias is expressed in terms

of two statistics – τ and ν – which characterize the random direction distribution, and in terms

of the third derivatives of the loss function.

For loss functions which happen to be aligned with the coordinate axes (e.g., those which can

be expressed as a sum of one-dimensional loss functions of each of the coordinate values) in

such a way that their third cross-derivatives are all zero (that is, ∂3L/∂xi∂xj∂xk = 0 unless

i = j = k), the bias depends only on τ , and as seen in Table I, τ is smallest for the Bernoulli

distribution. For such loss functions, it is also the case that RDSA with a Bernoulli distribution

can be up to p times more efficient than the Kiefer-Wolfowitz-Blum FDSA algorithm.
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Fig. 7. Mean squared error (over 1000 trials) plotted against number of measurements of Chin’s loss function, defined in

Eq. (71), for p = 15. Here, “quasirandom” directions are chosen from the uniform shell distribution; each new choice of

direction is constrained to be perpendicular to the P directions that came before it. The top curve, labelled with open circles (o),

corresponds to P = 0, and is the the ordinary random distribution. The solid curves correspond to values of P = 1, 2, 3, 5, 8, 13,

with the larger values of P producing the smaller mean squared errors.

However, this behavior is not generic. We have shown that it is possible to contrive a loss

function for which the Bernoulli distribution is less efficient than other distributions. And by

considering loss functions that are randomly rotated with respect to the coordinate axes, we find

that the average bias depends only on the fourth radial moment of the distribution, and is the

same for Axis, Shell, and Bernoulli. Furthermore, we find that the FDSA algorithm performs

as well as the various RDSA algorithms in the asymptotic limit, and we observe numerically

that FDSA is superior to RDSA in the pre-asymptotic regime. Finally, by looking at the squared

bias, averaged over random rotations, we find that the optimal choice of distributions in RDSA

is given by a uniform spherical shell.

While we believe that it is important to understand the relative behavior of these algorithms

on generic loss functions, it is true that in practice, one seldom needs to optimize a generic loss

function, but instead needs to optimize a particular loss function associated with an actual prob-

lem at hand. It is not unreasonable to imagine that this loss function, expressed in its “natural”

or “physical” coordinates, may have unusually small cross-derivatives compared to a generic

function. In this case, a Bernoulli distribution will be advantageous. If this judgement turns out

to be incorrect, and the loss function is not fortuitously aligned with the coordinate axes, then it
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is worth remarking that the Bernoulli distribution is not far from optimal, particularly in high di-

mensional spaces. Thus, while we vigorously reject some of the mistaken theoretical arguments

that have appeared in the literature, regarding the general superiority of the Bernoulli distribution

over other choices, we feel that in practical application, it is a very reasonable choice.

But we should add that in practical situations, other practical considerations may be more im-

portant. In the absence of noise, convergence can be exponentially fast [14], and if the noise is

small, it may be more useful to employ a “search then converge” approach in which a more direct

gradient descent is used to approach the general vicinity of x∗, and then stochastic approxima-

tion is used to narrow in on the optimum [15], [16]. A direct search, based on the Nelder-Mead

simplex algorithm, has also been proposed, in which multiple measurements are used to reduce

the measurement noise as the optimum is approached [17]. Another impracticality with the stan-

dard formulation is that optimal parameters ao and co depend on properties of the loss function

which are not usually available; variants of SA algorithms which provide adaptive estimates

of these parameters should be considered [16], [18], including iterate averaging methods [19].

Approaches using quasirandom or “common” random numbers [20] may improve convergence.

Finally, we remark that while asymptotic behavior is an important guide to performance, good

practical algorithms will have to behave well in the pre-asymptotic regime as well. A method

called “retrospective” approximation [21] claims that in exchange for a somewhat larger asymp-

totic variance, a more robust convergence can be achieved. Recent texts [22], [23], [24] provide

an overview of some of these issues in the context of some useful applications.

APPENDIX I

MOMENTS OF A UNIT SPHERICAL SHELL

In this appendix, we derive an expression for the moments of the isotropic distribution of

(x1, . . . , xp) constrained by x21 + . . .+ x
2
p = 1. Define

Fp,m ≡ E
{

xm11 x
m2
2 · · ·xmpp

}

=

∫

S x
m1
1 x

m2
2 · · ·xmpp dS
∫

S dS
, (77)

where
∫

S • dS corresponds to the integral over the surface of the unit sphere.

Let z be a p-dimensional vector in which each component is independently distributed as

N (0, 1). We will compute the quantity E
{

zm11 · · · zmpp
}

in two different ways, and by equating

the results, we will obtain an expression for Fp,m.
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For our first computation, we use the fact that the gaussian components are independent, and

write

E
{

zm11 · · · zmpp
}

= E{ zm11 } · · ·E
{

zmpp
}

. (78)

We have for each component that

E{ zm } =
∫∞
−∞ z

me−z
2/2 dz

∫∞
−∞ e

−z2/2 dz
= (m− 1)!! (79)

ifm is even (and zero ifm is odd), and so

E
{

zm11 · · · zmpp
}

= (m1 − 1)!! · · · (mp − 1)!! (80)

again under the assumption that every one of the componentsm1, . . . , mp are even.

For our second derivation, we use the relation z = rx, where r is the radius of the vector z,

and x is the unit vector in the direction of z. Thus we have

zm11 · · · zmpp = rm1+···+mpxm11 · · ·xmpp . (81)

Rather than integrate coordinate-wise, as we did in Eq. (80), we will use a kind of polar coordi-

nates, and write
∫ ∞

−∞
· · ·

∫ ∞

−∞
• dz1 . . . dzp =

∫ ∞

0

∫

S
• rp−1 dr dS. (82)

Then,

E
{

zm11 · · · zmpp
}

=

∫∞
0

∫

S z
m1
1 · · · zmpp e−r

2/2 rp−1 dr dS
∫∞
0

∫

S e
−r2/2 rp−1 dr dS

(83)

=

(

∫∞
0 e

−r2/2 rm1+···+mp rp−1 dr
) (

∫

S x
m1
1 · · ·xmpp dS

)

∫∞
0 e

−r2/2 rp−1 dr
∫

S dS
(84)

=
(p+m1 + · · ·+mp − 2)!!Fp,m

(p− 2)!! . (85)

Comparing Eq. (80) with Eq. (85), we have

Fp,m =
(m1 − 1)!! · · · (mp − 1)!!(p− 2)!!
(p+m1 + · · ·+mp − 2)!!

, (86)

which can also be written

E
{

xm11 x
m2
2 · · ·xmpp

}

=
(m1 − 1)!! · · · (mp − 1)!!

p(p+ 2) · · · (p+m1 +m2 + · · ·+mp − 2)
. (87)
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As special cases of Eq. (87), we have:

E
{

x2i
}

=
1

p
, (88)

E
{

x4i
}

=
3

p(p+ 2)
, (89)

E
{

x2ix
2
j

}

=
1

p(p+ 2)
, (90)

E
{

x6i
}

=
15

p(p+ 2)(p+ 4)
, (91)

E
{

x4ix
2
j

}

=
3

p(p+ 2)(p+ 4)
, (92)

E
{

x2ix
2
jx
2
k

}

=
1

p(p+ 2)(p+ 4)
. (93)

APPENDIX II

HIGHER-ORDER GRADIENT APPROXIMATIONS

The derivations in the text of this article are based on two-point gradient estimators, but many

of the same conclusions apply to higher-order estimators as well. In this appendix, we will

describe these higher-order estimators, and how the results in the text would be modified for that

case.

Fabian [25], [26] described a modification of the FDSA algorithm that used 2sp loss function

evaluations (instead of 2p) to achieve a gradient estimate with much smaller bias. Here, the

gradient of the ith coordinate is given by

ĝi(x) =

∑s
j=1 vj

[

L̂(x+ cujei)− L̂(x− cujei)
]

2c
, (94)

where the constants uj, vj are chosen beforehand to satisfy

∑

j

vjuj = 1,

∑

j

vju
3
j = 0,

...
∑

j

vju
2s−1
j = 0. (95)

With these conditions, the bias will scale like O(c2s). A smaller bias means that the schedule

for reducing ck → 0 can go more slowly, and in fact, by taking ck ∼ k1/(4s+2) we can achive
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Err2 ∼ k−2s/(2s+1), which for large enough s approaches the Robbins-Monro scaling of O(k−1).

Polyak and Tsybakov [27] described a randomized variant of this approach which can achieve

the same k−2s/(2s+1) scaling with only two (or even one!) measurement of the loss function for

each iteration. The practical utility of this approach, however, remains to be demonstrated.

A. Variance of a higher-order estimator

If we use the higher-order estimator of gradient in Eq. (94), we find that the noise the ith

component of the gradient is given by

ηi =

∑

j vj(ε
j
+ − εj−)
2c

, (96)

and in particular, we can compute the covariance and variance.

E
{

ηηT
}

=
σ2
∑

j v
2
j

2c2
I, (97)

E
{

ηTη
}

=
pσ2

∑

j v
2
j

2c2
. (98)

Although we have not seen it suggested in the literature, it is straightforward to apply Fabian’s

higher-order gradient estimators to the RDSA algorithms as well as to the FDSA algorithm. That

is:

ĝ(x) =

∑s
j=1 vj

[

L̂(x+ cujξ)− L̂(x− cujξ)
]

2c
ξ. (99)

Just as we saw with the two-point gradient estimators, the covariance and variance are the same

for all distributions of RDSA, and are the same as for FDSA. That is, the variance of the estima-

tor in Eq. (99) is given by Eq. (98).

In the spirit of Polyak and Tsybakov [27], we can consider replacing the coefficients vj with

random variables qj that have the property E{ qj } = vj . For instance, we can randomly choose

k ∈ {1, . . . , s} with probability pk, and set qj = 0 for j 6= k and qk = vk/pk. This way,

qj is zero for all but one value of j, which means that the higher-order gradient estimator can

be computed with only two computations of the loss function. For this randomized variant,

E
{

ηTη
}

=
pσ2

2c2
∑

j

E
{

q2j
}

, which is generally a larger variance than Eq. (98). The optimal

design uses pk = |vk|/
∑

k |vk|, and in that case the variance is given by

E
{

ηTη
}

=
pσ2

2c2





∑

j

|vj|




2

. (100)

But again, the practical utility of this approach has not been investigated.
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E{ ξ6i } E
{

ξ4i ξ
2
j

}

E
{

ξ2i ξ
2
j ξ
2
k

}

Distribution

Bernoulli 1 1 1

Axis p2 0 0

Normal 15 3 1

Shell 15p2/(p+ 2)(p+ 4) 3p2/(p+ 2)(p+ 4) p2/(p+ 2)(p+ 4)

TABLE II

FOUR RANDOM DIRECTION DISTRIBUTIONS AND STATISTICS THAT CHARACTERIZE THE BIAS IN THE HIGHER ORDER

(s = 2) GRADIENT ESTIMATOR.

B. Bias for higher-order gradient estimation

Using Fabian’s higher-order estimator of FDSA gradient in Eq. (94), it is fairly straightfor-

ward to write the bias

b` =
c2s

(2s+ 1)!





∑

j

vju
2s+1
j





∂2s+1L

∂x2s+1`

. (101)

The case for RDSA is a little more complicated, but it is not too hard to show that Eq. (99)

leads to

b =
c2s

(2s+ 1)!





∑

j

vju
2s+1
j



 E
{

L
(2s+1)
ξ ξ

}

. (102)

Considering in particular the s = 2 estimator, we have for the `th component of the derivative:

(

L
(5)
ξ ξ

)

`
=

∑

ijkmn

Lijkmnξiξjξkξmξnξ`. (103)

When we take expectation value, we only keep the even orders. In the two-point gradient es-

timator, this led to a pair of statistics – τ and ν – for characterizing the different RDSA distri-

butions. For this higher-order estimator, we now have three such statistics: E{ ξ6i }, E
{

ξ4i ξ
2
j

}

,

and E
{

ξ2i ξ
2
j ξ
2
k

}

. Table II shows how these statistics vary with the choice of random direction

distribution.

Again invoking smoothness in the loss function L, we note that the five combinations of

Liiii` are equal (namely: Liiii` = Liii`i = Lii`ii = Li`iii = L`iiii), and similarly for the ten

combinations of Lii``` and the thirty combinations of Liijj`. This allows us to write the analog
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of Eq. (22) for the higher-order gradient estimator:

b` =
c4

120





∑

j

vju
5
j





[

E
{

ξ6i
}

L````` + 5E
{

ξ4i ξ
2
j

}

∑

i6=`

Liiii` +

10E
{

ξ4i ξ
2
j

}

∑

i6=`

Lii``` + 30E
{

ξ2i ξ
2
j ξ
2
k

}

∑

i6=j 6=`

Liijj`

]

. (104)

In the special case that the cross-derivatives for the loss function L are zero, then – as was the

case with the two-point gradient estimator – the best choice of random directions is given by the

Bernoulli distribution. It is evident in Eq. (104) that the relevant statistic in that case is E{ ξ6i },
and Table II shows that the Bernoulli distribution exhibits the smallest value.

C. Rotation-averaged bias for higher-order gradient estimators

In the more generic case that the loss function and the coordinate axes are not aligned in

any particular way, then we can consider the rotation-averaged bias as an indicator of per-

formance. In this case the statistics of interest are 〈E{ (Uξ)6i }〉,
〈

E
{

(Uξ)4i (Uξ)
2
j

}〉

, and
〈

E
{

(Uξ)2i (Uξ)
2
j(Uξ)

2
k

}〉

. For a particular rotation U , we have

E
{

(Uξ)6`
}

=
∑

ijkmno

ui`uj`uk`um`un`uo`E{ ξiξjξkξmξnξo } , (105)

and keeping only the even moments,

E
{

(Uξ)6`
}

= E
{

ξ6i
}

∑

i

u6i`+ 15E
{

ξ4i ξ
2
j

}

∑

i6=j

u4i`u
2
j`+ 90E

{

ξ2i ξ
2
j ξ
2
k

}

∑

i6=j 6=k

u2i`u
2
j`u
2
k`, (106)

where the coefficients 1, 15, and 90 come from 6!/6!, 6!/(4!2!), and 6!/(2!2!2!) respectively.

Taking the average over all rotations,
〈

E
{

(Uξ)6`
}〉

= E
{

ξ6i
}

p
〈

u6i`
〉

+ 15E
{

ξ4i ξ
2
j

}

p(p− 1)
〈

u4i`u
2
j`

〉

+

90E
{

ξ2i ξ
2
j ξ
2
k

}

p(p− 1)(p− 2)
〈

u2i`u
2
j`u
2
k`

〉

(107)

= E
{

ξ6i
} 15p

(p+ 2)(p+ 4)
+ 15E

{

ξ4i ξ
2
j

} 3p(p− 1)
(p+ 2)(p+ 4)

+

90E
{

ξ2i ξ
2
j ξ
2
k

} p(p− 1)(p− 2)
(p+ 2)(p+ 4)

(108)

However, note that the sixth radial moment is given by

E
{

r6
}

= E







(

∑

i

x2i

)3






= E







∑

ijk

x2ix
2
jx
2
k







= pE
{

ξ6i
}

+ 3p(p− 1)E
{

ξ4i ξ
2
j

}

+ 6p(p− 1)(p− 2)E
{

ξ2i ξ
2
j ξ
2
k

}

, (109)
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where the coefficients 1, 3, and 6 come from 3!/3!, 3!/(2!1!), and 3!/(1!1!1!). Thus, we can

express
〈

E
{

(Uξ)6`
}〉

=
15

(p+ 2)(p+ 4)
E
{

r6
}

, (110)

and similarly

〈

E
{

(Uξ)4i (Uξ)
2
j

}〉

=
3

(p+ 2)(p+ 4)
E
{

r6
}

, (111)

〈

E
{

(Uξ)2i (Uξ)
2
j(Uξ)

2
k

}〉

=
1

(p+ 2)(p+ 4)
E
{

r6
}

. (112)

This says that the rotation-averaged bias for the higher-order bias estimator depends only on the

radial sixth moment of the direction distribution. That is, like the two-point gradient estimator,

the higher-order estimator leads to a bias on generically rotated loss functions which is the same

for the Bernoulli, Axis, and Shell distributions of random directions.

We speculate, by analogy with the result in Eq. (70) for two-point gradient estimators, and on

the basis of symmetry arguments, that the rotation-averaged squared bias would be smallest for

the Shell distribution.
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